Магистратура
Физика (ТПУ)

Физика (ТПУ)

КВАЛИФИКАЦИЯ

  • Научно-педагогическое направление - магистр естественных наук

МОДЕЛЬ ВЫПУСКНИКА

ON1 проводить анализ научно-технической информации, используя опыт отечественных и зарубежных ученых по тематике исследования и современные информационные технологии для поиска, хранения, обработки и передачи новой информации;
ON2 разработать программу учебного курса для преподавания физических дисциплин с учетом современных требований педагогики высшей школы, психологических и педагогических основ проведения инновационного образовательного процесса;
ON3 использовать современные физико-математические методы, методы компьютерного проектирования для создания инновационных проектов по развитию, внедрению и коммерциализации новых технологий и методы искусственного интеллекта для решения профессиональных задач;
ON4 проводить интерпретацию и обобщение результатов научных исследований; готовить отчеты, презентации и научные публикации с представлением практических рекомендаций по внедрению полученных результатов в производство;
ON5 разрабатывать предложения исовершенствовать технологические процессы и оборудование с привлечением инновационных технологий; производить оценку экономической эффективности технологических процессов и их экологической безопасности;
ON6 критически оценивать качество и результативность труда, затраты и результаты коллектива в производственной деятельности; проводить анализ состояния научно-технической проблемы, постановки цели и задач с целью совершенствованияи повышения эффективности технологических процессов в области инженерной физики;
ON7 моделировать производственные процессы и выполнять инженерные и технико-экономические расчеты с использованием пакетов прикладных программ и методов компьютерной обработки информации;
ON8 самостоятельно выполнять физико-технические исследования для оптимизации параметров объектов и процессов с помощью стандартных и специальных инструментальных и программных средств;
ON9 анализировать эффективность технологических процессов для повышения показателей энерго-, ресурсосбережения, создавать технологии утилизации отходов и системы обеспечения экологической безопасности производства;
ON10 проводить экспертизу технической документации, формировать заявку для научно-исследовательских проектов с составлением календарных планов, технических спецификаций и отчетов;
ON11 осуществлять контроль по наладке, настройке и опытной проверке технических приборов, систем и комплексов,производить выбор систем для обеспечения требуемой точности измерений;
ON12 проявлять креативность при решениях различных ситуаций и принимать ответственность за эти решения, аргументировать собственные суждения и научную позицию, организовать работу творческого коллектива для достижения поставленной научной цели.

Паспорт программы

Название
Физика (ТПУ)
Шифр
7M05309
Факультет
Физико-технический

дисциплины

Введение в квантовую теорию поля
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины сформировать основные понятия квантовой теории поля, активно используемой в теоретической физике. В ходе изучения курса сформировать у магистрантов способности: 1. объяснять основные положения квантовой теории поля; 2. понимать формализм теории возмущений для построения соответствующих диаграмм Фейнмана, 3. планировать, выполнять и документировать комплексные математические расчеты и решения физических задач, 4. объяснять решения физических и математических проблем во время лекций и сессий по разрешению проблем; 5. использовать аппарат применения методов квантовой теории поля в практических расчетах. Причины развития квантовой теории поля лежат в концептуальном и историческом контексте науки и возможных ограничениях при теоретическом описания квантового поля. Формализм квантовой теории поля, в частности: квантование поля; теоретико-полевое описание идентичных частиц; уравнение Клейна-Гордона; формализм Лагранжа для полей; симметрии, теоремы Нётер и законы сохранения; инвариантность Пуанкаре и связанные с ней дискретные симметрии; поля Дирака; краткое введение в теорию возмущений и диаграммы Фейнмана; понятие о перенормировке. Текущие исследования ядерной физики и физики частиц.

Иностранный язык (профессиональный)
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель – приобретение и совершенствование компетенций в соответствии с международными стандартами иноязычного образования, с целью общения в межкультурной, профессиональной и научной среде. Магистрант должен уметь интегрировать новую информацию, понимать организацию языков, взаимодействовать в социуме, отстаивать свою точку зрения.

История и философия науки
  • Количество кредитов - 3
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель: формирование углубленного представления о современной философии как системе научного знания, включающего мировоззренческие проблемы в их рационально-теоретическом осмыслении. Основные аспекты дисциплины включают вопросы эволюции и развития научного мышления, исторические моменты, вклад ученых и научных школ в формирование науки, этические и социальные аспекты научной деятельности.

Организация и планирование научных исследований (англ)
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: заключается в обучении магистров проведению научных исследований, осуществлении научно-методической работы, социализации обучающейся молодежи и участии их в системе корпоративного управления ОВПО. Магистранты учатся взаимодействовать со стейкхолдерами ОВПО, участвовать в исследовательских проектах.

Основные принципы современной физики
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины - изложение основных принципов современной физики, связей симметрии физических систем относительно различных преобразований пространственно-временных координат с законами сохранения. Дать магистрантам глубокое понимание закономерностей физических явлений. Магистрант должен получить четкое представление об основных принципах современной физики. В ходе изучения курса сформировать у магистрантов способности: 1. принцип относительности; преобразования Галилея и Лоренца; уравнения физики в ковариантной форме; принцип симметрии, суперпозиции, принцип неопределенности; принцип соответствия; закон сохранения энергии и однородность времени; 2. Формулировать законы сохранения импульса и момента количества движения; зеркальную симметрию пространства и закон сохранения четности; принцип неразличимости тождественных частиц и статистику частиц; зарядовую независимость сильных взаимодействий; аддитивные и мультипликативные законы сохранения; 3. использовать коэффициент конверсии в современных физических расчетах; применять принцип соответствия в квантовой механике, атомной физике; 4. использовать релятивистский инвариант и определять пороги ядерных процессов; определить время жизни быстрых нестабильных частиц и пороги ядерных процессов. 5. владеть: пониманием об основных принципах современной физики; о принципе симметрии и законах сохранения; о релятивистском инварианте и его использовании; Принцип относительности. Преобразования Галилея и Лоренца. Уравнения физики в инвариантной форме. Принцип соответствия как ориентир при построении новых физических теорий. Сохраняющиеся величины в квантовой физике. Оператор симметрии и унитарные преобразования. Законы сохранения электрического заряда, барионного и лептонного чисел. Инвариантность относительно поворотов и трансляций. Зарядовая независимоть сильных взаимодействий. Изотопический спин. Принцип неразличимости тождественных частиц и статистика частиц. Сохранение четности и зеркальная симметрия. Аддитивные и мультипликативные законы сохранения. Аддитивные и мультипликативные законы сохранения. Принцип неопределенности в квантовой механике. Вырождение в центральных потенциалах. Соотношение неопределенностей для энергии-времени. Понятие о виртуальных частицах и процессах. Рассмотрение аддитивных и мультипликативных законов сохранения, как следствие характера генераторов преобразования, оставляющих систему инвариантной; рассмотрение принципов физики (относительности, симметрии, суперпозиции, неопределенности, соответствия). Магистрант должен уметь объяснить связь законов сохранения физических величин со свойствами симметрии пространства-времени, уметь применять принцип неопределенности для объяснения особенностей микромира, использовать релятивистский инвариант при описании процессов при высоких энергиях в микромире.

Педагогика высшей школы
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель – формирование способности к педагогической деятельности в вузе на основе знаний дидактики высшей школы, теорий воспитания и менеджмента образования, анализа и самооценки преподавательской деятельности. Курс рассматривает проектирование образовательной деятельности будущего преподавателя с применением КТО, реализации Болонского процесса, овладения лекторским, кураторским мастерством с использованием стратегий и методов обучения/воспитания и оценивания (TLA-стратегий).

Приборы и установки для анализа твердого тела
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: овладение современными методами исследования твердого тела, принципами работы основных элементов спектрометрических установок и электронной аппаратуры, применяемой для автоматизации физического эксперимента. В ходе изучения курса магистранты будут способны: 1. определять метрологические характеристики методов исследования твердого тела, основных элементов спектрометрических установок и устройств; 2. осуществить правильный выбор метода анализа и электрофизической установки, необходимой для решения конкретной аналитической задачи; 3. принимать участие в фундаментальных исследованиях и проектах в области физики конденсированного состояния, 4. участвовать в модернизации современных и создании новых методов изучения механических, электрических, магнитных, тепловых свойств твердых тел; 5. решать задачи, требующие абстрактного и креативного мышления и оригинальности в разработке концептуальных аспектов проектов научных исследований. Основные элементы электрофизических установок. Радиоактивные препараты, используемые для аналитических целей. Принцип работы, основные технические характеристики линейных и циклических ускорителей. Физические основы методов регистрации. Критерии выбора детекторов для аналитических установок. Основные способы спектральных измерений: Спектрометры фотонов, электронов, ионов и нейтронов. Стандартные системы электроники для сбора и предварительной обработки информации детекторов излучения. Система КАМАК. Стандартные модули системы. Автоматизация физических установок. Особенности применения ЭВМ в физических исследованиях. Основы методов элементного и структурного анализа твердых тел с использованием пучков ионизирующего излучения.

Психология управления
  • Количество кредитов - 3
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Формирование знаний об основных понятиях психологии управления для практического применения наиболее важных аспектов управления в профессиональном взаимодействии. Основные принципы психологии управления, личность в управленческом взаимодействии, управление поведением личности, современные идеи, психология управления групповыми явлениями, мотивация и практическая рефлексия.

Ядерная астрофизика
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины сформировать у магистрантов знания по современной проблеме астрофизики и ядерных реакций в звездной материи. В ходе изучения курса сформировать у магистрантов способности: 1. формулировать физические законы применяемые к космическим объектам; 2. анализировать научно-техническую информацию, 3. изучать отечественный и зарубежный опыт по тематике исследования; 4. использовать фундаментальные знания в области современной ядерной астрофизики. 5.использовать физических методов для космических объектов. Звезды и межзвездная среда. Рождение звезд. Галактики и квазары. Применение физических законов к изучению космических объектов (звезд, космической плазмы) и Вселенной в целом.Источники звездной энергии. Уравнения переноса излучения и их простейшие решения. Ядерные реакции в звездах и других астрономических объектах. Энергия и механизмы деления ядер. Светимость звезд и их масса. Физические методы исследований космических объектов. Ядерные реакции в астрофизических объектах. Современные проблемы астрофизики. Изучить основные понятия астрофизики, закономерности мира звезд и современные теоретические представления о природе звезд и их систем;показать действие фундаментальных законов в условиях космоса;изучить физические методы исследований космических объектов;познакомиться с современными проблемами астрофизики, новейшими открытиями и достижениями в исследовании Вселенной за последние годы.

Приведены данные за 2021-2024 гг.

дисциплины

3D-моделирование в технической физике
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: обучение навыкам применения методов компьютерного 3D-моделирования и программирования основных математических алгоритмов для решения физических задач и обработки экспериментальных данных. В ходе изучения курса сформировать у магистрантов способности: 1. проводить оценку эффективности систем регистрации параметров и управления различными технологическими процессами; 2. интерпретировать, визуализировать результаты 3D-моделирования и обосновать оптимальные параметры моделируемого процесса; 3. исследовать построенную модель на адекватность, полноту и устойчивость по входным параметрам; 4. применять практические приемы определения и численные методы расчета рациональных характеристик объектов; 5. разрабатывать инновационные проекты по развитию, внедрению и коммерциализации новых технологий и методы искусственного интеллекта для решения профессиональных задач в области технической и прикладной физики. Дисциплина направлена на изучение следующих аспектов: Математическая модель. Основные понятия и классификация. Принципы и этапы математического моделирования. Методы решения систем алгебраических уравнений: а) прямые методы (метод Гаусса, метод Крамера); б) итерационные методы (метод итераций, метод Зейделя, метод релаксации); в) итерационные методы вариационного типа; г) методы минимизации функций. Решение нелинейных уравнений (метод простой итерации, метод Ньютона, метод секций, интерполяционные методы). Методы численного интегрирования и дифференцирования. Квадратурные формулы интерполяционного типа. Линейные интегральные уравнения (уравнения Фредгольма, уравнения Вольтера), методы решения (преобразование Лапласа, метод последовательных приближений, метод резольвента, метод сведения к алгебраическому уравнению).

Аккумулирующие свойства водорода в металлах и сплавах
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: овладение современными методами анализа материалов, насыщенных водородом и методами водородной обработки металлов и сплавов. В ходе изучения курса магистранты будут способны: 1. понимать особенности взаимодействия водорода с металлами и сплавами; 2. планировать и проводить исследования в области аккумулирующих свойств водорода в твердых телах; 3. решать экспериментальные задачи в области исследования состава и структуры, физико-механических свойств материалов, насыщенных водородом; 4. объяснить физические принципы, лежащие в основе механизмов радиационно-стимулированной диффузии и выхода водорода; 5. объяснить социальные и когнитивные функции современной физики, а также междисциплинарные связи в области различных научных и технических знаний, которые способствуют решению практических, производственных задач в будущей профессиональной деятельности. При изучении дисциплины магистранты будут изучать следующие аспекты: Взаимодействие водорода с металлами. Методы исследования систем металл-водород. Диффузия и выход водорода из металлов под действием термического и радиационного воздействия. Феноменологическая модель механизма диффузии и выхода водорода из металлов под действием ионизирующего излучения.

Дефекты в твердых телах и модифицирование материалов
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: формирование и развитие у студентов теоретических представлений о взаимосвязи строения и свойств реальных кристаллических веществ, а также последующего использования ими приобретенных знаний для исследования возможности разработки материалов с заданным комплексом необходимых для практического использования свойств. В ходе изучения курса магистранты будут способны: 1. проводить классификацию дефектов в твердых телах; 2. понимать основные процессы образования дефектов в твердых телах; 3. характеризовать динамику дефектов в твердых телах 4. объяснять роль дефектов структуры в формировании химических, электрофизических, оптических и механических свойств твердофазных материалов. При изучении дисциплины магистранты будут изучать следующие аспекты: классификация дефектов в твердых телах, основные процессы их образования и характеристика динамики развития, роль дефектов структуры в формировании химических, электрофизических, оптических и механических свойств твердофазных материалов, исследования в области химии твердого тела и твердофазных функциональных материалов.

Диффузионная неустойчивость в многокомпонентных газовых смесях
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: освоение основных методов расчета диффузионного процесса при решении практических задач стационарного и нестационарного диффузионного смешения в многокомпонентных газовых смесях. Аннотация дисциплины: Уравнения диффузии Стефана-Максвелла. Особенности многокомпонентной диффузии. Диффузия и неустойчивость механического равновесия в изотермических трехкомпонентных газовых смесях. Метод балластного газа. Инверсия плотности смеси. Границы устойчивой диффузии в трехкомпонентных газовых смесях. Концентрационная конвекция при изотермической диффузии в вертикальных каналах различной формы

Изотопный, химический и структурный анализ поверхности
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: формирование профессиональных компетенций овладения методами анализа приповерхностной области материалов с помощью распыления образца ионами, искровым разрядом, лазерным излучением В ходе изучения курса магистранты будут способны: 1. освоить физические процессы, лежащие в основе методов анализа приповерхностной области материалов: образование вакансий на внутренних оболочках электронной структуры (рентгеновская фотоэлектронная спектроскопия) и переходы между энергетическими уровнями (электронный микроанализ и электронная оже-спектроскопия) 2. различать современные методы анализа локального состава, структуры и физико-химических свойств поверхности, 3. применять экспериментальную технику, обеспечивающую изотопный, химический и структурный анализ поверхности; 4. ориентироваться в свойствах поверхностных слоев и тонких пленок, способах их получения, исследования и модификации 5. владеть базовыми навыками принятия решений в области анализа твердого тела; методами, масс-спектроскопии для исследований изотопного и химического состава поверхности твердого тела и тонких пленок, термо-десорбционной масс-спектрометрии. При изучении дисциплины магистранты будут изучать следующие аспекты: Экспериментальные особенности диагностики поверхности. Основные физические явления, лежащие в основе методов диагностики поверхности. Структура поверхности. Основные узлы аналитических установок. Требования к условиям эксперимента. Основы методов электронной спектроскопии. Основы методов ионной спектроскопии. Классификация механиз-мов ионного распыления. Элементы линейной каскадной теории распыления. Модели ионного распыления. Тепловые пики. Ударные волны. Классификация механизмов ионообразования. Модели ионообразования.

Кинетическая теория газов
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины – изучение статистических методов описания к неоднородным газам; микроскопической интерпретации таких понятий как температура, внутренняя энергия, теплота, энтропия на основе кинетической теории. В ходе изучения курса сформировать у магистрантов способности: 1. описать законы кинетической теории газов, основы термодинамики, закономерности изменения одних физических параметров при изменении других в определенных условиях; 2. раскрывать физический механизм явления, анализировать изменение термодинамических параметров в конкретных процессах; 3. вычислять термодинамические параметры и константы с применением информационных технологий; 4. объяснить газовые законы, математическую модель идеального газа; 5. исследовать свойства газов на основе представлений о молекулярном строении газа и определенном законе взаимодействия между его молекулами. При изучении дисциплины магистранты будут изучать следующие аспекты: Кинетическая теория газов. Предвычисления практически всех равновесных свойств (параметров уравнений состояния) и неравновесных свойств газов (коэффициентов переноса и потоков вещества, энергии, импульса, энтропии, электрического заряда). Примеры использования фундаментальных принципов для решения уравнений и получения практически важных результатов; углубленное изучение молекулярно-кинетической теории на конкретных задачах описания необратимых процессов в газах, освоение основ математического аппарата современной кинетической теории газов.

Методы научных исследований в теплофизике
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины-изучить структуру и содержание газа в системе теплофизических процессов, возможность исследования в газовой фазе, закономерности протекания теплофизических явлений, количественно охарактеризовать физические процессы. В ходе изучения курса сформировать у магистрантов способности: 1. экcпериментальные методы измерения теплофизических величин; 2. произвести выбор необходимых средств измерения и оценитъ точность измерительных систем; 3. владеть практическими навыками для экспериментального исследования физических явлений в теплофизике; 4. работать с приборами и оборудованием современной физической лаборатории; 5. объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий. Основные требования при проектировании экспериментальных установок; изучение ламинарного и турбулентного пограничных слоев; измерение коэффициента гидравлического сопротивления; метод Престона; динамика вязкой жидкости; безвихревое движение идеальной несжимаемой жидкости; формирование у магистрантов навыков использования специальных вопросов курса «Методы научных исследований в теплофизике», понимание основ физических явлений, ознакомление с основными методами теплофизического эксперимента; навыками научно-исследовательской работы и работы со справочной литературой.

Оптимизация технологических процессов
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: приобретение навыков использования методов моделирования для описания закономерностей технологических процессов и оптимизации параметров исследуемого процесса и объекта. В ходе изучения курса сформировать у магистрантов способности: 1. описывать процессы тепломассопереноса при горении жидких и твердых топлив в камере сгорания; 2. применять методы оптимизации технологии сжигания топлива с учетом математической и физической модели процессов горения в различных камерах сгорания; 3. оценивать экономическую эффективность технологических процессов и их экологическую безопасность с привлечением инновационных технологий по совершенствованию технологических процессов и оборудования; 4. создавать технологии утилизации отходов и системы обеспечения экологической безопасности производства; 5. проводить моделирование объектов с помощью современных программных средств; формулировать и обосновать техническую и научную новизну полученных результатов моделирования и защитить их приоритет. Дисциплина направлена на изучение следующих аспектов: Химическое равновесие. Скорость и порядок реакции. Зависимость скорости реакции от давления. Экспериментальное определение порядка реакции. Связь энергии активации с тепловым эффектом реакции. Различные типы воспламенения. Кривые тепловыделения и теплоотвода; графическое решение. Стационарная теория теплового взрыва: разложение экспоненты; решение для плоского сосуда; вид уравнений для цилиндрического и сферического сосудов. Методы оптимизации технологических процессов. Физические модели задачи о горении различных топлив. Особенности горения и режимы горения жидких и твердых топлив. Математические модели процесса горения в камере горения. Основные уравнения о распылении и горении жидкого топлива. Уравнение неразрывности. Уравнение движения и уравнение внутренней энергии.

Радиационные эффекты в конденсированных средах
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: изучение основных физических процессов, происходящих при взаимодействии различных видов излучения с конденсированными средами; оптимальных методик для экспериментальных исследований и обработки полученных результатов. В ходе изучения курса магистранты будут способны: 1. определять область применения используемых методов; 2. использовать действующие стандарты и технические условия, положения и инструкции по эксплуатации оборудования, нормативные материалы, касающиеся области профессиональной деятельности 3. владеть методами анализа свойств водорода в металлах и сплавах, изотопного химического структурного анализа поверхности радиационных дефектов в конденсированных средах, 4. объяснять воздействие радиации на полупроводники, диэлектрики, металлы, сплавы, органические и неорганические соединения, полимеры и изделия на их основе; 5. применять методы решения основных проблем, связанных с радиационной стойкостью изделий в различных областях техники и путей её повышения. При изучении дисциплины магистранты будут изучать следующие аспекты: Взаимодействие частиц и излучений с веществом. Неупругие столкновения заряженных частиц. Потери энергии на ионизацию. Радиационные потери. Критическая энергия. Пик Брегга. Экстраполированный пробег электронов. Эффекты ионизации в материалах с разным типом химической связи. Элементарные дефекты в кристаллах. Простейшие типы повреждений и их эволюция. Механизмы образования устойчивых пар Френкеля. Фокусоны и краудионы. Взаимодействие первичных дефектов и образование деформационной структуры кристалла. Вторичные смещения атомов. Баланс энергии в каскаде. Модель Линдхарда. Радиационно-стимулированная диффузия и уравнения баланса точечных дефектов. Эволюция дефектной структуры при низких и высоких температурах облучения. Физические механизмы изменения макроскопических свойств металлов при облучении.

Сканирующая зондовая микроскопия
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: формирование навыков планирования эксперимента, выбора оптимальных методик, реализуемых с помощью сканирующих зондовых микроскопов, определения необходимых условий экспериментов и оптимального метода обработки полученных результатов. В результате изучения дисциплины магистрант будет способен: 1. объяснять фундаментальные основы методов сканирующей зондовой микроскопии; 2. проводить анализ свойств водорода в металлах и сплавах с использованием средств технологического оснащения, автоматизации и диагностики производств, современных информационных технологий; 3. использовать физико-математические методы изотопного химического и структурного анализа поверхности; 4. владеть методами сканирующей зондовой микроскопии в металлах и сплавах; 5. использовать творческий подход для исследования дефектов в твердых телах при решении задач проектирования объектов новой техники, эксплуатации, разработки технологических процессов. При изучении дисциплины магистранты будут изучать следующие аспекты: Физические основы сканирующей зондовой микроскопии. Принцип и основные режимы работы сканирующего туннельного микроскопа. Сканирующая туннельная спектроскопия. Принцип и основные режимы работы атомно-силового микроскопа (АСМ). Силы взаимодействия в твердых телах. Ван дер Ваальсовы силы, электростатическое и капиллярное взаимодействие. Методы регистрации изгиба и параметров колебаний зонда. Режимы работы АСМ. Латеральный силовой микроскоп. Методики, реализуемые в сканирующей зондовой микроскопии. Электростатическая силовая микроскопия. Сканирующая емкостная спектроскопия. Сканирующая микроскопия ближней оптической зоны. Микротермальный анализ. Силовая модуляционная спектроскопия. Микроскопия фазового детектирования.

Современные методы термодинамики необратимых процессов
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: изучение оптимальных моделей с использованием основных принципов феноменологической теории необратимых процессов. Аннотация дисциплины: Термодинамика необратимых процессов. Принцип локального равновесия. Энтропия неравновесных систем. Критерий эволюции для равновесных и неравновесных состояний. Теорема Глэнсдорфа-Пригожина. Линейная теория Онсагера. Принцип микроскопической устойчивости неравновесных состояний обратимости. Принцип Кюри. Устойчивость стационарных состояний и принцип Ле-Шателье. Флуктуации и границы применимости термодинамического метода

Физика реального газа и жидкости
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины-определить структуру и содержание газа в системе теплофизических процессов; проведение исследований процессов в газовой фазе, изучение закономерности протекания теплофизических явлений, измерение количественных характеристик физических процессов. В ходе изучения курса сформировать у магистрантов способности: 1. применять экcпериментальные методы измерения теплофизических величин; 2. проводить выбор необходимых средств измерения для заданной точности погрешности; 3. работать с приборами и оборудованием современной физической лаборатории; 4. проводить статистическую обработку экспериментальных данных; 5. объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий. Различные свойства жидких и газообразных сред. Решение задачи обтекания крылового профиля по методу конформных отображений. Постулат Жуковского-Чаплыгина. Уравнения Навье-Стокса динамики вязкой несжимаемой жидкости в безразмерных переменных. Безразмерные параметры и их смысл. Число Рейнольдса. Основы теории подобия. Движение вязкой несжимаемой жидкости в круглой трубе. Закон Пуазейля. Особенности течения при больших числах Рейнольдса. Понятие о пограничном слое. Уравнение Прандтля. Задача Блаузиуса. Ламинарные и турбулентные движения. Опыты и критическое число Рейнольдса. Уравнение Рейнольдса осредненного турбулентного движения. Формула Буссинеска. Гипотеза Прандтля.

Приведены данные за 2021-2024 гг.

ПРАКТИКИ

Исследовательская
  • Тип контроля - Защита практики
  • Описание - Цель практики: приобретение опыта в исследовании актуальной научной проблемы, расширение профессиональных знаний, полученных в процессе обучения, и формирование практических навыков ведения самостоятельной научной работы. Практика направлена на развитие навыков исследования, анализа и применения экономических знаний.

Педагогическая
  • Тип контроля - Защита практики
  • Описание - Цель дисциплины: формирование способности осуществлять педагогическую деятельность в вузах, проектировать образовательный процесс и проводить отдельные виды учебных занятий с использованием инновационных образовательных технологий.

Приведены данные за 2021-2024 гг.