Докторантура
Искусственный интеллект в медицине

Искусственный интеллект в медицине

КВАЛИФИКАЦИЯ

  • Научно-педагогическое направление - доктор философии (PhD)

МОДЕЛЬ ВЫПУСКНИКА

1. Строить математические модели различных задач создания общественного блага, определять методологию применения к ним методов искусственного интеллекта, задавать критерии оценки качества, разрабатывать общие модели данных и организовывать обмен данными на основе облачных вычислений с целью повышения вероятности социально выгодных результатов.
2. Сопоставлять и осуществлять выбор алгоритмов цифровой обработки сигналов для различных приложений медицинского назначения, оценивать экспериментальные результаты и соотносить их с соответствующими методами проектирования и программирования, реализовывать алгоритмы цифровой обработки сигналов и методы проектирования на встраиваемых устройствах.
3. Выполнять основные этапы подготовки данных медицинской визуализации при разработке алгоритмов искусственного интеллекта, объяснять текущие ограничения для обработки данных и исследовать новые подходы для решения проблем доступности данных.
4. Применять методы машинного обучения для медицинской диагностики и аналитики на основе медицинских данных, создавать инструменты для интеллектуального анализа данных.
5. Оценивать, как встраиваемые системы, инструменты искусственного интеллекта для оказания медицинской помощи могут быть использованы для выявления и оценки воздействия на здоровье поведенческих и экологических факторов.
6. Составлять программы исследований, применять методы научных исследований, осуществлять научное руководство проведением исследований по важнейшим научным проблемам фундаментального и прикладного характера, получать необходимые данные из научно-технических документов, отчетов и других справочных материалов.
7. Вести преподавательскую деятельность в высших учебных заведениях, внедрять передовые и инновационные технологии обучения, разрабатывать учебно-методическое обеспечение новых курсов с учетом социальной модернизации Казахстана и развития национальной экономики.
8. Внести вклад в рамках оригинальных исследований, которые расширяют границы знаний путем применения искусственного интеллекта в медицине, использовать академический стиль письма, публиковать результаты исследований в виде научных статей в казахстанских и зарубежных изданиях, быть готовым к корректному и толерантному взаимодействию в обществе, к социальному взаимодействию и сотрудничеству для решения научно-технических задач.

Паспорт программы

Название
Искусственный интеллект в медицине
Шифр
8D06114
Факультет
Информационных технологий

дисциплины

Академическое письмо
  • Количество кредитов - 2
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности писать научные тексты, в основном научно-исследовательские статьи, применять стратегии и навыки текстового анализа. В результате изучения дисциплины сформировать у студентов способности:  структурировать свои идеи, чтобы писать четко сформулированные предложения и связные абзацы;  использовать академический стиль письма, характеризующийся точным, лаконичным и формальным языком; В рамках дисциплины рассматриваются следующие аспекты: Основные аспекты академического письма для докторантов. Структура научной статьи оригинального исследовательского типа «Введение, методы, результаты, анализ и обсуждение» (IMRAD). Различия в структуре и организации научных работ. Оформление разделов научной статьи: ведение, литературный обзор, цели, отчет о проделанной работе, планы на будущее, ссылки. Способы связывания идеи и аргументов. Критическое оценивание. Методы строгого лаконичного письма. Анализ и синтез в академическом письме. Рецензирование научных трудов.  сообщать о предыдущих исследованиях и оценить их важность;  распознавать и использовать различные методы в академических текстах;  структурно представлять результаты научных исследований с точки зрения выбора журнала, типа публикации или относительной ценности новостей своих выводов.

Искусственный интеллект для социального блага
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности применять искусственный интеллект и машинное обучение для общественного блага, в частности, для решения проблем окружающей среды, здравоохранения и социальной сферы. В рамках дисциплины рассматриваются следующие аспекты: Введение в вопросы общественного блага. Математические основы и технологии для решения задач общественного блага: задачи оптимизации, регрессии, сверточные нейронные сети, рекуррентные нейронные сети. Преобразование идей искусственного интеллекта в реальное социальное воздействие. Методы машинного обучения в социальных проблемах. Компьютерное зрение в социальных проблемах. Обработка естественного языка в социальных проблемах. Применение искусственного интеллекта в зеленой энергетике, экологии, инклюзии, медицине.

Методы научных исследований
  • Количество кредитов - 3
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в развитии научного мышления и исследовательских навыков докторантов, применении методов научных исследований в области научных интересов. В результате изучения дисциплины сформировать у студентов способности:  описывать основные понятия научного исследования и его методологии;  определять соответствующие темы исследований, выбирать и определять соответствующие исследовательские задачи и их параметры;  проводить разработку и исследование теоретических и экспериментальных моделей информационных ресурсов;  проводить анализ результатов экспериментов, осуществлять выбор оптимальных решений, составлять обзоры, отчеты и готовить научные публикации. В рамках дисциплины рассматриваются следующие аспекты: введение в методологию исследования: обзор фундаментальных основ. Проблема исследования: научное мышление. Обзор литературы: значение обзора литературы, потребности, цели, источники, функции литературы. Исследовательские гипотезы: значение, дефиниции, природа, функции, значимость, виды гипотез, переменные в гипотезе, формулирование гипотезы, проверка гипотезы. Исследовательский подход: философские предпосылки, качественный и количественный подход, смешанный методический подход. Исследовательские стратегии: эксперименты, этнография, феноменология, обоснованная теория, практическое исследование.

Написание и защита докторской диссертации
  • Количество кредитов - 12
  • Тип контроля - Докторская диссертация
  • Описание - Цель написания и защита докторской диссертации: оформления и защита докторской диссертации является формирование у докторантов способности раскрыть содержание научно-исследовательской работы для защиты диссертации. В ходе изучения курса сформировать у докторанта способности: 1. обосновать содержание новых научно-обоснованных теоретических и экспериментальных результатов, позволяющих решать теоретическую или прикладную задачу или являющихся крупным достижением в развитии конкретных научных направлений; 2. объяснить оценку полноты решений поставленных задач согласно специфике профессиональной сферы деятельности; 3. могут анализировать альтернативные варианты решения исследовательских и практических задач и оценивать перспективы реализации этих вариантов; 4. применять навыки написания научных текстов и представления их в виде научных публикаций и презентаций. 5. планировать и структурировать научный поиск, четко выделять исследовательскую проблему, разрабатывать план/программу и методы ее изучения, оформлять в соответствии с требованиями ГОСО научно-квалификационную работу в виде диссертации на соискание ученой степени доктора философии (PhD) по образовательной программе «8D07502 -Стандартизация и сертификация (по отраслям)». При изучении написания и защита докторской диссертации докторанты будут изучать следующие аспекты: Оформление документов для представления диссертации к защите. Информационная карта диссертации и регистрационно-учетная карточка (в формате Visio 2003). Выписка из протокола заседания учреждения, в котором проходила предварительная защита диссертации. Сопроводительное письмо в ВАК. Экспертное заключение о возможности опубликования автореферата. Экспертное заключение о возможности опубликования диссертации. Протокол заседания счетной комиссии. Бюллетень для голосования. Стенограмма заседания диссертационного совета. Список научных трудов. Отзыв официального оппонента. Отзыв ведущей организации. Отзыв научного руководителя.

Продвинутая цифровая обработка сигналов
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины состоит в формировании способности применять технологии обработки медицинских сигналов с использованием преобразования Фурье, спектрального анализа и фильтрации сигналов. В рамках дисциплины рассматриваются следующие аспекты: Краткая справка о развитии методов обработки биомедицинских сигналов и данных. Роль автоматизации обработки и анализа биомедицинских сигналов в совершенствовании медицинской диагностики. Представление данных: Получение и представление медико-биологических данных. Сплайны сигналов. Предварительная обработка: Методы кодирования медицинских данных. Погрешности методов цифровой обработки сигналов (ЦОС). Цифровая фильтрация. Цифровые фильтры. Сглаживание и проектирование фильтров. Адаптивная фильтрация. Сжатие данных. Создание виртуальных приборов сжатия сигналов. Биомедицинские сигналы. Синтаксическое распознавание сигналов. Цифровые технологии в медицине. Современная ЦОС и Интернет вещи.

Приведены данные за 2022-2025 гг.

дисциплины

Встраиваемые системы и их приложения в здравоохранении
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины состоит в формировании способности использования встраиваемых систем для решения практических задач в здравоохранении современными инструментальными средствами. В рамках дисциплины рассматриваются следующие аспекты: Встраиваемые системы. Механизмы реального времени. Встраиваемые вычислительные системы. Возможности высокоуровневого построения ВсС. 5 Архитектурное проектирование ВсС. Аспектная модель процесса создания ВсС. Технические средства ВсС. Модульный принцип организации ВсС. Сетевые интерфейсы ВсС. Программные средства ВсС. Языки программирования: Требования к языкам для управляющих систем. Инструментальные средства отладки и тестирования ВсС. Разработка программного продукта: Особенности проектирования встраиваемых систем. Устройство современного контроллера на примере SDK-1.1. Жидкокристаллический индикатор. Внешняя память. Инструментальные средства для SDK-1.1. Примеры программирования стенда SDK-1.1.

Глубокое обучение для медицинской визуализации
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности выполнять построение моделей машинного обучения для визуализации и диагностики на основе медицинских изображений. В рамках дисциплины рассматриваются следующие аспекты: Введение в медицинскую визуализацию. Основы медицинской визуализации. Визуализация результатов проекционной рентгенографии: излучение, электроны, ионизация, оборудование, электроны, побочные эффекты, выявление и диагностика переломов костей. Визуализация результатов компьютерной томографии (КТ): терминология и оборудование, сонограммы, представление данных КТ, реконструкция изображения. Ультразвуковая визуализация: архитектура системы, компоненты, терминология, примечание о рефракции и скорости звука, формирование изображений и типичное применение, артефакты, передовые методики. Визуализация результатов магнитно-резонансной томографии: катушки, перевернутые протоны, индукция Фарадея, визуализация неврологических заболеваний.

Машинное обучение для медицинской диагностики
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности применять методы машинного обучения в вопросах диагностики медицинских заболеваний.В рамках дисциплины рассматриваются следующие аспекты: Введение в медицинскую диагностику. Обнаружение заболеваний с помощью компьютерного зрения. Построение и обучение модели медицинской диагностики. Классификация изображений и дисбаланс классов. Архитектура CNN. Работа с небольшим обучающим множеством. Тестирование модели. Показатели чувствительности, специфичности и оценки. Кривая ROC и пороговое значение. Сегментация медицинских изображений. Сегментация изображений 2D U-Net и 3D U-Net. Увеличение объема данных для сегментации. Функция потери для сегментации изображений. Различные популяции и диагностические технологии. Измерение результатов лечения пациентов.

Прикладная электротехника и электроника в медицине
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины состоит в формировании способности решать физические и технические задачи в области медицинской электроники и биомедицинской диагностике. В рамках дисциплины рассматриваются следующие аспекты: Электрические измерения в медицине. Средства медицинских измерений. Электроды и микроэлектроды: Электроды электрокардиографов и электроэнцефалографов. Система электро-организм: Эквивалентные схемы замещения системы электрод-организм. Резистивные датчики. Фотоэлектрические приборы. Полупроводниковые фотопреобразователи.Термоэлектрические преобразователи. Медицинские устройства: Применение фотодатчиков, чувствительных к инфракрасному излучению, для измерения температуры кожных покровов. Пьезоэлектрические преобразователи. Измерительные усилители и фильтры.Функциональные узлы электронных устройств медицинского назначения. Структура и схемотехника диагностических и терапевтических устройств.Измерительные и регистрирующие каналы. Электронные электростимуляторы.

Приведены данные за 2022-2025 гг.

ПРАКТИКИ

Исследовательская
  • Тип контроля - Защита практики
  • Описание - Цель практики: приобретение опыта в исследовании актуальной научной проблемы, расширение профессиональных знаний, полученных в процессе обучения, и формирование практических навыков ведения самостоятельной научной работы. Практика направлена на развитие навыков исследования, анализа и применения экономических знаний.

Педагогическая
  • Тип контроля - Защита практики
  • Описание - Формирование практических и учебно-методических навыков проведения лекционных, семинарских занятий, творчески применять в педагогической деятельности научно-теоретические знания, практические навыки, проводить учебные занятия по дисциплинам специальности; владеть современными профессиональными приемами, методами организации обучения; использовать на практике новейшие теоретические, методологические достижения, составлять учебно-методическую документацию, организовывать воспитательную работу со студентами.

Приведены данные за 2022-2025 гг.