Докторантура
Наука о данных

Наука о данных

КВАЛИФИКАЦИЯ

  • Научно-педагогическое направление - Доктор философии (PhD)

МОДЕЛЬ ВЫПУСКНИКА

1.Определять инструменты и ​​методологии, требующие больших вычислительных ресурсов, для статистического анализа и визуализации сложных данных, эффективно применять методы статистических вычислений к реальным наборам данных.

Паспорт программы

Название
Наука о данных
Шифр
8D06107
Факультет
Информационных технологий

дисциплины

Академическое письмо
  • Количество кредитов - 2
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Курс знакомит докторантов с основными особенностями научного стиля речи и письма, построением логического изложения текста, критическим оцениванием источников информации, формирует умения создания академических и научно-педагогических текстов,публикаций и презентаций

Интегративная наука о данных
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности к интеграции и анализу различных источников данных для извлечения осмысленной информации и принятия обоснованных решений. Результаты обучения: 1. Интегрировать и анализировать данные из различных областей. 2. Анализировать и проектировать жизненный цикл данных от приобретения к интерпретации и действию. 3. Применять методы статистического моделирования и машинного обучения визуализации для решения сложных задач науки о данных. 4. Эффективно визуализировать и передавать информацию. 5. Учитывать этические соображения и соображения конфиденциальности в интеграционных проектах по науке о данных.

Методы научных исследований
  • Количество кредитов - 3
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Знание данной дисциплины необходимо для изучения и анализа научно-исследовательских работ, постановки научно-педагогической проблемы, проведения теоретических и экспериментальных исследований, выбора необходимых методов и инструментов исследований, позволяющих проводить логическое обобщение собранных фактов, вырабатывать понятия и суждения, делать умозаключения и теоретические выводы с целью разработки рекомендации и результатов научных исследований.

Написание и защита докторской диссертации
  • Количество кредитов - 12
  • Тип контроля - Докторская диссертация
  • Описание - Цель написания и защита докторской диссертации: оформления и защита докторской диссертации является формирование у докторантов способности раскрыть содержание научно-исследовательской работы для защиты диссертации. В ходе изучения курса сформировать у докторанта способности: 1. обосновать содержание новых научно-обоснованных теоретических и экспериментальных результатов, позволяющих решать теоретическую или прикладную задачу или являющихся крупным достижением в развитии конкретных научных направлений; 2. объяснить оценку полноты решений поставленных задач согласно специфике профессиональной сферы деятельности; 3. могут анализировать альтернативные варианты решения исследовательских и практических задач и оценивать перспективы реализации этих вариантов; 4. применять навыки написания научных текстов и представления их в виде научных публикаций и презентаций. 5. планировать и структурировать научный поиск, четко выделять исследовательскую проблему, разрабатывать план/программу и методы ее изучения, оформлять в соответствии с требованиями ГОСО научно-квалификационную работу в виде диссертации на соискание ученой степени доктора философии (PhD) по образовательной программе «8D07502 -Стандартизация и сертификация (по отраслям)». При изучении написания и защита докторской диссертации докторанты будут изучать следующие аспекты: Оформление документов для представления диссертации к защите. Информационная карта диссертации и регистрационно-учетная карточка (в формате Visio 2003). Выписка из протокола заседания учреждения, в котором проходила предварительная защита диссертации. Сопроводительное письмо в ВАК. Экспертное заключение о возможности опубликования автореферата. Экспертное заключение о возможности опубликования диссертации. Протокол заседания счетной комиссии. Бюллетень для голосования. Стенограмма заседания диссертационного совета. Список научных трудов. Отзыв официального оппонента. Отзыв ведущей организации. Отзыв научного руководителя.

Продвинутые темы математической статистики
  • Количество кредитов - 5
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности проводить исследования в области многомерной статистики и байесовского моделирования, применять методы статистического машинного обучения к анализу данных. Результаты обучения: 1. Проводить исследования в области многомерной статистики и визуализации данных. 2. Анализировать на концептуальном уровне многомерные методы статистического анализа. 3. Проводить моделирование и вычисления, необходимые для выполнения расширенного анализа данных с байесовской точки зрения. 4. Исследовать статистические аспекты машинного обучения и автоматизированного мышления посредством использования (выборочных) данных. 5. Анализировать производительность алгоритмов статистического машинного обучения.

Приведены данные за 2021-2024 гг.

дисциплины

Вычислительная статистика
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель курса — обучить студентов применению вычислительных методов и приемов для решения статистических задач. Он направлен на развитие у студентов навыков и понимания, необходимых для использования компьютерных алгоритмов и программ в статистическом анализе данных. Студенты учатся использовать инструменты R и SAS для выполнения статистических расчетов, визуализации данных и представления результатов.

Доступ и управление большими данными
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности эффективно извлекать, хранить, обрабатывать и анализировать большие данные для поддержки принятия решений на основе данных. Результаты обучения: 1. Применять принципы, методы и инструменты, связанные с доступом и управлением крупномасштабными наборами данных. 2. Сопоставлять различные подходы к обработке объемов, разнообразия и скорости передачи данных. 3. Эффективно извлекать, хранить, обрабатывать и анализировать большие данные для получения ценных сведений и принятия решений на основе данных. 4. Работать с большими данными, используя различные методы хранения, обработки, анализа, визуализации и управления. 5. Предвидеть и нести профессиональную ответственность за этические последствия получения, обработки и анализа данных.

Продвинутая теория вероятности
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности применять различные аспекты теории вероятностей, от основных теорем до теории мартингалов в дискретном времени, для решения задач науки о данных. Результаты обучения: 1.Излагать основные идеи, лежащие в основе теории вероятностей. 2.Практиковать основные концепции вероятности, такие как: распределение, ожидание, дисперсия, независимость, условная вероятность. 3. Применять теорию вероятностей для построения математических моделей и решения статистических задач. 4.Определять типы практических задач, которые можно решить с помощью вероятностных методов, и умение использовать полученные знания для их решения. 5.Создавать математические инструменты для анализа данных на основе вероятностных методов.

Теория машинного обучения
  • Тип контроля - [РК1+MT+РК2+Экз] (100)
  • Описание - Цель дисциплины: состоит в формировании способности разрабатывать математические инструменты для проектирования и теоретического анализа методов машинного обучения. Результаты обучения: 1. Формализовать задачи машинного обучения в статистических и теоретико-игровых условиях. 2. Исследовать статистическую сложность задач машинного обучения, используя основные понятия сложности. 3. Анализировать статистическую эффективность алгоритмов обучения. 4. Разрабатывать стратегии машинного обучения, используя правильную регуляризацию. 5. Применять инженерный подход для создания решений, отвечающих конкретным потребностям с учетом глобальных, культурных, социальных, экологических и экономических факторов.

Приведены данные за 2021-2024 гг.

ПРАКТИКИ

Исследовательская
  • Тип контроля - Защита практики
  • Описание - Цель практики: приобретение опыта в исследовании актуальной научной проблемы, расширение профессиональных знаний, полученных в процессе обучения, и формирование практических навыков ведения самостоятельной научной работы. Практика направлена на развитие навыков исследования, анализа и применения экономических знаний.

Педагогическая
  • Тип контроля - Защита практики
  • Описание - Формирование практических и учебно-методических навыков проведения лекционных, семинарских занятий, творчески применять в педагогической деятельности научно-теоретические знания, практические навыки, проводить учебные занятия по дисциплинам специальности; владеть современными профессиональными приемами, методами организации обучения; использовать на практике новейшие теоретические, методологические достижения, составлять учебно-методическую документацию, организовывать воспитательную работу со студентами.

Приведены данные за 2021-2024 гг.