For foreign students
Technical Physics (ITMO)

Technical Physics (ITMO)

QUALIFICATION

  • Scientific and pedagogical direction - Master of Natural Sciences

MODEL OF GRADUATING STUDENT

ON1 analyze scientific and technical information using domestic and foreign experience on research topics and information technologies for searching, processing, transmitting new information and conducting various types of classes for traditional and distance learning using modern interactive teaching methods and forms of education.
ON2 form scientific knowledge among undergraduates in the field of technical physics; develop educational-methodical complexes of specialized disciplines for teaching, taking into account the modern requirements of higher education pedagogy, the pedagogical foundations of the innovative educational process and management psychology.
ON3 apply physical and mathematical methods, methods of computer 3 D-modeling to create innovative projects for the development, implementation and commercialization of new technologies and artificial intelligence methods for solving professional problems in the field of technical and applied physics.
ON4 interpret and summarize the results of scientific research, prepare reports, presentations and scientific publications with practical recommendations on the implementation of the results in production.
ON5 develop proposals for improving technological processes and equipment using innovative technologies based on an assessment of the economic efficiency of technological processes and their environmental safety.
ON6 evaluate the state of a scientific and technical problem, setting goals and objectives with the aim of improving and increasing the efficiency of technological processes in the field of engineering physics, using risk analysis tools for innovative activities.
ON7 simulate production processes and perform engineering and technical and economic calculations to optimize the parameters of objects and processes using application packages ANSYS Maxwell, COMSOL Multiphysics; determine the thermal load on the elements of technological processes in the energy sector and cryotechnology.
ON8 use the Feucht and Maxwell models to calculate the characteristics of viscoelastic materials using MATLAB tools and software when describing heat and mass transfer processes in complex engineering objects; create waste management technologies and environmental safety systems.
ON9 carry out energy-saving measures and methods for assessing the saving of energy resources in the production, distribution and consumption of electric and thermal energy; reconstruct and modernize energy sources while forming the main strategic directions in the electric power industry.
ON10 conduct an examination of technical documentation, form an application for research projects with the preparation of calendar plans, technical specifications and reports in Kazakh, Russian and English.
ON11 carry out control over the adjustment, tuning and pilot testing of technical devices, systems and complexes with the choice of systems providing the required measurement accuracy; apply diagnostic methods and monitoring of energy processes to calculate and forecast the reliability of process plants.
ON12 manage the work of the creative team in the development of an innovative project to achieve the set scientific goal, critically evaluating the economic costs, quality and productivity of the team in production activities; be creative in solving various situations and take responsibility for these decisions.

Program passport

Speciality Name
Technical Physics (ITMO)
Speciality Code
7M05305
Faculty
of Physics and Technology

disciplines

3D modeling in technical physics
  • Number of credits - 3
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop skills in using computational methods and mathematical algorithms in solving physical problems and processing experimental data for modeling physical phenomena. Content: Mathematical model. Basic concepts. Classification. Principles and stages of mathematical modeling. Methods of numerical integration and differentiation. Quadrature formulas of the interpolation type.

Calculation and ensuring the thermal regime devices and equipment
  • Number of credits - 5
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to carry out calculations of thermal conditions of structures and devices based on a unified system of design documentation. Content: Requirements for the thermal conditions of instruments and devices. Features of heat transfer in structures. Problems of increasing the reliability of devices. Principles of calculating temperature fields in complex systems.

Foreign Language (professional)
  • Number of credits - 5
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to form in undergraduates the skills necessary for communication in business and scientific fields, the implementation of communicative competencies that allow conducting research activities in international research teams. Will be studied: methods of oral, written and electronic communication; creation of productive professionally significant texts in English.

History and Philosophy of Science
  • Number of credits - 3
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: studying regularities and trends in the development of special activities for the production of scientific knowledge, taken in their historical dynamics and examined in a historically changing sociocultural context. Introduces the problem of science as an object of special philosophical analysis, forms knowledge about the history and theory of science.

Mathematical modeling of physical processes
  • Number of credits - 6
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: developing the ability to select optimal modeling methods to describe the patterns of technological processes Content: Stationary theory of thermal explosion: expansion of the exponent; solution for a flat vessel; type of equations for cylindrical and spherical vessels. Methods for optimizing technological processes. Physical models of the problem of combustion of various fuels. Mathematical models of the combustion process in the combustion chamber.

Organization and Planning of Scientific Research (in English)
  • Number of credits - 5
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - The purpose of the discipline is to form a system of knowledge and practical skills for the organization and conduct of scientific research. The discipline is aimed at studying the process of conducting scientific research; the choice of research methods adequate to the goals and objectives; requirements for scientific documentation; trends and prospects for the use of artificial intelligence in scientific research; the process of commercialization of research results.

Pedagogy of Higher Education
  • Number of credits - 5
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - The purpose is the formation of the ability of pedagogical activity through the knowledge of higher education didactics, theories of upbringing and education management, analysis, and self-assessment of teaching activities. The course covers the educational activity design of specialists, Bologna process implementation, acquiring a lecturer, and curatorial skills by TLA-strategies.

Physics of real gas and liquid
  • Number of credits - 3
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to determine the structure and content of gas in the system of thermophysical processes; to conduct studies of processes in the gas phase; to study the patterns of thermophysical phenomena; to measure the quantitative characteristics of physical processes. Content: Various properties of liquid and gaseous media. Solving the problem of wing profile flow by the method of conformal maps. The postulate of Zhukovsky-Chaplygin. Dimensionless parameters and their meaning.

Psychology of management
  • Number of credits - 3
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to form in undergraduates the competencies necessary for the application of modern psychological approaches to scientific management. The following will be studied: the theoretical foundations of managerial interaction, the psychological features of the implementation of basic managerial functions, the psychology of the subject of managerial activity, the methods of psychological research in the field of managerial activity and interaction.

Thermal Physics of Conducting Media
  • Number of credits - 4
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to determine the basic physical models of heat and mass transfer in stationary and moving media; calculate heat and mass flows, temperature fields using experimental methods of studying heat and mass transfer processes. Content: Magnetic hydrodynamics equations for an ideal environment. «Frozenness» of the magnetic field. Alfvén waves of finite amplitude. Discontinuous flows in magnetohydrodynamics. Basic equations.

Thermal Physics of Rheological Fluids
  • Number of credits - 4
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to form the ability to calculate the stress-strain state and the work of internal stresses during the flow of various materials. Content: Classification of rheological fluids. Viscoelastic materials. The Feucht model. Maxwell's model. Experimental determination of the characteristics of rheostable and non-rheostable rheological fluids. The flow of rheological fluid in the pipe.

Data for 2023-2026 years

disciplines

Diagnostics of energy technical processes
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to solve applied problems of diagnosing energy-technical processes and equipment using modern information technologies. Content: Methods for diagnosing energy-technical processes. Methodology for analysis and assessment of technogenic risk. Basic qualitative and quantitative methods of risk assessment. Methodology for assessing reliability, safety and risk. Test and functional diagnostics.

Diffusion instability in a multicomponent gas mixtures
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop skills in measuring physical quantities of multicomponent diffusion when solving practical problems for stationary and non-stationary diffusion mixing. Content: Description of diffusion in multicomponent gas mixtures. Introduction of effective diffusion coefficient. Molecular and hydrodynamic transport during multicomponent diffusion. Auxiliary devices and equipment. Ballast gas method.

Energy conversion processes and devices
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: analysis of modes and processes of energy conversion during modeling and design of devices. Content: Primary energy resources. Electrical energy conversion devices: purpose, classification, block diagrams, brief description. Energy systems. Criteria and comparative assessment of various methods of generating electricity.

Energy Saving Technologies
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to develop a program of energy-saving measures in the production, distribution and consumption of electrical and thermal energy. Content: Ecological processes. Priorities in environmental activities. Patterns of development of the biosphere and conditions for maintaining ecological balance. Ensuring environmental safety of the environment.

Environmental Monitoring
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop knowledge of environmental problems of environmental management, causes and consequences of the adverse effects of sources of anthropogenic environmental pollution. Content: Environmental monitoring, its types, system of observation methods and ground support, management and feedback, control methods. Ecological control.

Experimental Thermal Physics
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to carry out experimental studies of the thermophysical properties of substances in various states of aggregation. Content: Methodological foundations of the experiment. Methods for experimental study of thermophysical properties of substances. Measurements and measuring devices. Electrical methods for measuring physical quantities. Temperature measurements by radiation. Pyrometers: brightness, color and radiation. Pressure and vacuum measurement.

Modern methods of thermodynamics of irreversible processes
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to select a model to describe irreversible processes close to thermodynamic equilibrium. Content: The principle of local equilibrium. Basic thermodynamic equation for a nonequilibrium system Linear Onsager theory. The principle of microscopic stability of nonequilibrium states of reversibility. Curie's principle. Stability of stationary states and Le Chatelier's principle. Fluctuations and limits of applicability of the thermodynamic method.

Modern problems of science, technology and production
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to apply elements of a scientific worldview in solving problems of the chosen scientific direction. Content: Scientific and scientific-technical revolutions. Global processes and their dynamics. Analysis of the dynamics of development and competitiveness of countries and regions. Cosmology. Testing the theory of relativity. Gravitational waves. Antigravity.

Physical Kinetics
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to study processes and phenomena in a wide range of thermodynamic parameters of the state of matter, including the region of low temperatures. Content: Phase space. Distribution function. Liouville's theorem. Microcanonical distribution. Features of quantum statistics. Density matrix. Equilibrium of three phases. Phase equilibrium diagrams.

Prospects for the development of applied physics
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: developing skills for solving engineering and professional problems Content: The role of applied physics in the engineering education system. Modern methods of control using physical research methods. Consideration of the relationship between fundamental and applied research. Application of physical laws in professional activities. Solving physical problems for specific technological and practical tasks

Special chapters of modern physics
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop the ability to reveal the essence of the basic concepts, laws, theories of classical and modern physics in their internal interconnection and integrity. Content: Fundamentals of physical qualimetry. Model of the phenomenon. Analysis of limiting cases. General system of natural classification. Space for presenting assessments. Relationship between natural coordinates and invariants. Axioms of the special theory of relativity. Relativistic dynamics.

The methodology of writing scientific articles
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: formation of skills in preparing articles for publication in the Thomson Reuters, Scopus database. Content: Features of the academic scientific text. Article as a product of a research project. The problem of novelty. Features of preparation of articles based on the results of quantitative and qualitative research. The main algorithm for constructing a scientific text: thesis - argument - conclusion. Citation in scientific text. Plagiarism.

Thermophysical processes in cryogenic systems
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: undergraduates master modern methods of low-temperature research Content: Features of measurements at low temperatures. Gas thermometry with real gas. Designs of gas thermometers, their characteristics. Application of a gas thermometer in a cryophysical experiment. Resistance thermometers based on semiconductors. Physical principles of cooling and obtaining low temperatures. Thermomechanical effects. Isentropic expansion.

Thermostating and control of thermal processes
  • Type of control - [RK1+MT+RK2+Exam] (100)
  • Description - Purpose: to develop practical skills in master's students in calculating thermal conditions of structures Content: Features of heat exchange in the designs of devices and instruments. Principles of constructing systems to ensure the thermal conditions of devices and instruments. Principles of constructing thermal control systems for devices and instruments. Principles of calculating temperature fields in complex systems.

Data for 2023-2026 years

INTERNSHIPS

Pedagogical Practice
  • Type of control - Защита практики
  • Description - Aim of pedagogical practice: the formation of skills for students to deepen and consolidate knowledge in the field of teaching methods in higher education institutions. When studying pedagogical practice, the following aspects will be considered: Acquaintance with the goals, objectives and content of teaching practice.

Research
  • Type of control - Защита практики
  • Description - The purpose of the practice: gaining experience in the study of an actual scientific problem, expand the professional knowledge gained in the learning process, and developing practical skills for conducting independent scientific work. The practice is aimed at developing the skills of research, analysis and application of economic knowledge.

Data for 2023-2026 years